1 概述
本文介绍编写最最简单的word count的代码,编译成jar后,提交到flink v1.19.2集群进行运行。
2 环境准备
2.1 jdk和maven工具的安装
yum安装jdk 1.8:
yum install java-1.8.0-openjdk-1.8.0.212.b04-0.el7_6.x86_64 java-1.8.0-openjdk-devel-1.8.0.212.b04-0.el7_6.x86_64 -y
下载maven二进制文件的压缩包,并解压。
cd /usr/local
wget https://dlcdn.apache.org/maven/maven-3/3.9.9/binaries/apache-maven-3.6.3-bin.tar.gz
tar xf apache-maven-3.6.3-bin.tar.gz
ln -s /usr/local/apache-maven-3.6.3 apache-maven
将以下两行追加到/etc/profile:
MAVEN_HOME=/usr/local/apache-maven
PATH=$PATH:$MAVEN_HOME/bin
加载linux环境变量:
source /etc/profile
查看maven的信息:
flink_29">2.2 准备flink集群
https://archive.apache.org/dist/flink/flink-1.19.2/
下载flink安装包,并启动集群,启动脚本放在bin目录中,脚本名称为start-cluster.sh。
flink集群的web控制台监听在8081端口:
flink_39">3 编写flink应用代码
3.1 创建代码目录
cd /tmp
mkdir -p wordcount
cd wordcount
mkdir -p src/main/java/org/example
3.2 pom.xml文件
pom.xml内容如下,可直接拿来使用。
pom.xml指定flink版本为1.19.2,只需显式指明两个依赖flink-streaming-java和flink-clients。
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.example</groupId>
<artifactId>flink-demo</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<flink.version>1.19.2</flink.version>
</properties>
<dependencies>
<!-- Flink Streaming Java API -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- Flink CLI Support (optional, for local execution) -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients</artifactId>
<version>${flink.version}</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.2.4</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>org.example.WordCount</mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
3.3 java代码
文件名称为src/main/java/org/example/WordCount.java,内容如下:
package org.example;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
public class WordCount {
public static void main(String[] args) throws Exception {
// 创建流处理执行环境
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 定义数据源(从集合中读取数据)
DataStream<String> text = env.fromElements(
"Hello Flink",
"Hello World",
"Flink is awesome",
"World is big"
);
// 转换操作:将句子拆分为单词,并统计每个单词的出现次数
DataStream<Tuple2<String, Integer>> counts = text
.flatMap(new Tokenizer())
.keyBy(value -> value.f0) // 按单词分组
.sum(1); // 对单词计数求和
// 输出结果
counts.print();
// 启动任务
env.execute("WordCount Example");
}
// 自定义 FlatMapFunction,将句子拆分为单词
public static final class Tokenizer implements FlatMapFunction<String, Tuple2<String, Integer>> {
@Override
public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
// 将句子转换为小写并按空格分割
String[] words = value.toLowerCase().split("\\W+");
// 发射每个单词及其初始计数(1)
for (String word : words) {
if (word.length() > 0) {
out.collect(new Tuple2<>(word, 1));
}
}
}
}
}
最终代码结构
编译
mvn clean package
flink_186">提交jar包到flink集群
浏览器打开:http://localhost:8081
在左边菜单栏的Submit New job,点击提交jar文件即可,flink任务开始运行。
在任务的标准输出可以看见,有内容输出:
小结
本文介绍启动flink集群、编写最简单的flink应用代码,提交jar包到flink集群,这些基础流程非常适合新接触flink的工程师。